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What are we going to cover?

We’re going to talk strings (and not
string theory)

How to create them

How they are stored (and the
“ripple” effect that has)

How to effectively find data in
strings
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Strings aren’t stored like you might think.

All strings are part of a “global pool”

Each collection of characters
exists once.

A collection may be
referenced more than once.

Changes in collection
membership causes a new
collection to be created.

Examples to follow.

Image from [1].

Changes in collection membership can be expensive.
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Strings aren’t stored like you might think.

Exploring strings

library(lobstr)

x <- c(1, 2, 3)

y <- x

obj_addr(x)

obj_addr(y)

y[[3]] <- 4

x

obj_addr(x)

obj_addr(y)

x <- c("a", "a", "abc", "d")

ref(x, character=TRUE)

The idea of strings being unique “bubbles” into strings as factors
with levels.
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Strings aren’t stored like you might think.

paste() or paste0()

Which is faster/better?

Based on a series of tests,
paste0() is about 20%
faster.

Individual executions of
either function in single digit
micro-second range.

Plotting routines have
unforeseen limitations.

Library stringr has many
string handling functions.

Test code is in the embedded file.
Code in embedded file.
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Strings aren’t stored like you might think.

Same image.

Code in embedded file.
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Finding textual data

Regular expressions (regexp) are the “work horse” in R.

“grep” comes from
“global regexp print,” part
of the Unix ed program
commands: g/re/p.

regexp is a pattern
matching language

Lines that match the
pattern are returned

Lines are character
sequences

url <-

"http://www.gutenberg.org/

cache/epub/1112/pg1112.txt"

lines <- readLines(url)

grep("rose", lines)

grep("rose", lines, value=TRUE)

grep("rose", lines, value=TRUE,

ignore.case=TRUE)

grep("rose\\b", lines, value=TRUE,

ignore.case=TRUE)

grep("rose[s]\\b", lines, value=TRUE,

ignore.case=TRUE)

Books have been written about regexp. It is a powerful tool.
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Text processing

Looking at Romeo and Juliet

Shakespeare is acknowledged author of “Romeo and Juliet”. Many
people have questioned that based on textual analysis of the play,
when compared to others he may have written.
Use the tm library to:

1 Convert all the lines of text into individual words

2 Convert all words to lower case

3 Create a histogram of words sorted from high to low by usage

4 Modify the histogram by removing words that are tootootootootootootootootootootootootootootootootootootootootoo common

5 Modify the histogram by “stemming” the words from the
previous requirement
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Q & A time.

Q: How did you get into artificial
intelligence?
A: Seemed logical – I didn’t have
any real intelligence.
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What have we covered?

Looked at how strings are stored
Looked at different ways to create
and modify strings
Measured the performance of
different ways to create strings
Looked at ways strings could be
analyzed

Next: Data insights
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Files of interest

1 Code snippets
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## First codes
rm(list=ls())

library(lobstr)

x <- c(1, 2, 3)

y <- x

obj_addr(x)

obj_addr(y)

y[[3]] <- 4

x

obj_addr(x)

obj_addr(y)

x <- c("a", "a", "abc", "d")

ref(x, character=TRUE)


rm(list=ls())
library(tidyr)
library(ggplot2)
library(bench)
library(ggbeeswarm)
library(stringr)

globalData <- list(limit=500)

makeTestString <- function(testLength, header, trailer=NULL)
{
    testString <- header
    for (i in 1:testLength)
    {
        testString <- sprintf("%s %s%s%s, ",
                              testString,
                              "\"",
                              "a",
                              "\"")
    }

    if (is.null(trailer) == TRUE)
    {
        testString <- substr(testString, 1, nchar(testString)-2)
    }
    else
    {
        testString <- sprintf("%s%s", testString, trailer)
    }

    testString <- sprintf("%s)", testString)
    return(testString)
}

globalData$testPaste <- makeTestString(globalData$limit, "paste(", 'sep=""')
globalData$testPaste0 <- makeTestString(globalData$limit, "paste0(", NULL)
globalData$testStr_c<- makeTestString(globalData$limit, "str_c(", 'sep=""')

testPaste <- function()
{
    returnValue <- eval(parse(text=globalData$testPaste))
    return(returnValue)
}

testPaste0 <- function()
{
    returnValue <- eval(parse(text=globalData$testPaste0))
    return(returnValue)
}

testStrC <- function()
{
    returnValue <- eval(parse(text=globalData$testStr_c))
    return(returnValue)
}

temp <- mark(
    testPaste(),
    testPaste0(),
    testStrC(),
    min_time = .1)

plot(temp)

temp[,c("expression","median")]
max(temp[,"median"])/min(temp[,"median"])



rm(list=ls())

url <- "http://www.gutenberg.org/cache/epub/1112/pg1112.txt"

lines <- readLines(url)

grep("rose", lines)

grep("rose", lines, value=TRUE)

grep("rose", lines, value=TRUE, ignore.case=TRUE)

grep("rose\\b", lines, value=TRUE, ignore.case=TRUE)

grep("rose[s]\\b", lines, value=TRUE, ignore.case=TRUE)


"Chuck Cartledge"
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