
Data Science: Advanced-R Boot Camp
String Manipulation

Chuck Cartledge, PhD

23 February 2020

1/13

2/13

Intro. Interesting things grep[l] Hands-on Q & A Conclusion References Files

Table of contents (1 of 1)

1 Intro.
2 Interesting things

Strings aren’t stored like
you might think.

3 grep[l]
Finding textual data

4 Hands-on
Text processing

5 Q & A

6 Conclusion

7 References

8 Files

c©Old Dominion University

3/13

Intro. Interesting things grep[l] Hands-on Q & A Conclusion References Files

What are we going to cover?

We’re going to talk strings (and not
string theory)

How to create them

How they are stored (and the
“ripple” effect that has)

How to effectively find data in
strings

c©Old Dominion University

4/13

Intro. Interesting things grep[l] Hands-on Q & A Conclusion References Files

Strings aren’t stored like you might think.

All strings are part of a “global pool”

Each collection of characters
exists once.

A collection may be
referenced more than once.

Changes in collection
membership causes a new
collection to be created.

Examples to follow.

Image from [1].

Changes in collection membership can be expensive.

c©Old Dominion University

5/13

Intro. Interesting things grep[l] Hands-on Q & A Conclusion References Files

Strings aren’t stored like you might think.

Exploring strings

library(lobstr)

x <- c(1, 2, 3)

y <- x

obj_addr(x)

obj_addr(y)

y[[3]] <- 4

x

obj_addr(x)

obj_addr(y)

x <- c("a", "a", "abc", "d")

ref(x, character=TRUE)

The idea of strings being unique “bubbles” into strings as factors
with levels.

c©Old Dominion University

6/13

Intro. Interesting things grep[l] Hands-on Q & A Conclusion References Files

Strings aren’t stored like you might think.

paste() or paste0()

Which is faster/better?

Based on a series of tests,
paste0() is about 20%
faster.

Individual executions of
either function in single digit
micro-second range.

Plotting routines have
unforeseen limitations.

Library stringr has many
string handling functions.

Test code is in the embedded file.
Code in embedded file.

c©Old Dominion University

7/13

Intro. Interesting things grep[l] Hands-on Q & A Conclusion References Files

Strings aren’t stored like you might think.

Same image.

Code in embedded file.

c©Old Dominion University

8/13

Intro. Interesting things grep[l] Hands-on Q & A Conclusion References Files

Finding textual data

Regular expressions (regexp) are the “work horse” in R.

“grep” comes from
“global regexp print,” part
of the Unix ed program
commands: g/re/p.

regexp is a pattern
matching language

Lines that match the
pattern are returned

Lines are character
sequences

url <-

"http://www.gutenberg.org/

cache/epub/1112/pg1112.txt"

lines <- readLines(url)

grep("rose", lines)

grep("rose", lines, value=TRUE)

grep("rose", lines, value=TRUE,

ignore.case=TRUE)

grep("rose\\b", lines, value=TRUE,

ignore.case=TRUE)

grep("rose[s]\\b", lines, value=TRUE,

ignore.case=TRUE)

Books have been written about regexp. It is a powerful tool.

c©Old Dominion University

9/13

Intro. Interesting things grep[l] Hands-on Q & A Conclusion References Files

Text processing

Looking at Romeo and Juliet

Shakespeare is acknowledged author of “Romeo and Juliet”. Many
people have questioned that based on textual analysis of the play,
when compared to others he may have written.
Use the tm library to:

1 Convert all the lines of text into individual words

2 Convert all words to lower case

3 Create a histogram of words sorted from high to low by usage

4 Modify the histogram by removing words that are too common

5 Modify the histogram by “stemming” the words from the
previous requirement

c©Old Dominion University

10/13

Intro. Interesting things grep[l] Hands-on Q & A Conclusion References Files

Q & A time.

Q: How did you get into artificial
intelligence?
A: Seemed logical – I didn’t have
any real intelligence.

c©Old Dominion University

11/13

Intro. Interesting things grep[l] Hands-on Q & A Conclusion References Files

What have we covered?

Looked at how strings are stored
Looked at different ways to create
and modify strings
Measured the performance of
different ways to create strings
Looked at ways strings could be
analyzed

Next: Data insights

c©Old Dominion University

12/13

Intro. Interesting things grep[l] Hands-on Q & A Conclusion References Files

References (1 of 1)

[1] Hadley Wickham, Advanced R, Chapman and Hall/CRC, 2019.

c©Old Dominion University

13/13

Intro. Interesting things grep[l] Hands-on Q & A Conclusion References Files

Files of interest

1 Code snippets

c©Old Dominion University

First codes
rm(list=ls())

library(lobstr)

x <- c(1, 2, 3)

y <- x

obj_addr(x)

obj_addr(y)

y[[3]] <- 4

x

obj_addr(x)

obj_addr(y)

x <- c("a", "a", "abc", "d")

ref(x, character=TRUE)

rm(list=ls())
library(tidyr)
library(ggplot2)
library(bench)
library(ggbeeswarm)
library(stringr)

globalData <- list(limit=500)

makeTestString <- function(testLength, header, trailer=NULL)
{
 testString <- header
 for (i in 1:testLength)
 {
 testString <- sprintf("%s %s%s%s, ",
 testString,
 "\"",
 "a",
 "\"")
 }

 if (is.null(trailer) == TRUE)
 {
 testString <- substr(testString, 1, nchar(testString)-2)
 }
 else
 {
 testString <- sprintf("%s%s", testString, trailer)
 }

 testString <- sprintf("%s)", testString)
 return(testString)
}

globalData$testPaste <- makeTestString(globalData$limit, "paste(", 'sep=""')
globalData$testPaste0 <- makeTestString(globalData$limit, "paste0(", NULL)
globalData$testStr_c<- makeTestString(globalData$limit, "str_c(", 'sep=""')

testPaste <- function()
{
 returnValue <- eval(parse(text=globalData$testPaste))
 return(returnValue)
}

testPaste0 <- function()
{
 returnValue <- eval(parse(text=globalData$testPaste0))
 return(returnValue)
}

testStrC <- function()
{
 returnValue <- eval(parse(text=globalData$testStr_c))
 return(returnValue)
}

temp <- mark(
 testPaste(),
 testPaste0(),
 testStrC(),
 min_time = .1)

plot(temp)

temp[,c("expression","median")]
max(temp[,"median"])/min(temp[,"median"])

rm(list=ls())

url <- "http://www.gutenberg.org/cache/epub/1112/pg1112.txt"

lines <- readLines(url)

grep("rose", lines)

grep("rose", lines, value=TRUE)

grep("rose", lines, value=TRUE, ignore.case=TRUE)

grep("rose\\b", lines, value=TRUE, ignore.case=TRUE)

grep("rose[s]\\b", lines, value=TRUE, ignore.case=TRUE)

"Chuck Cartledge"

	Intro.
	Interesting things
	Strings aren't stored like you might think.

	grep[l]
	Finding textual data

	Hands-on
	Text processing

	Q & A
	Conclusion
	References
	Files

